Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 10 results ...

Birgonul, Z (2021) A receptive-responsive tool for customizing occupant's thermal comfort and maximizing energy efficiency by blending BIM data with real-time information. Smart and Sustainable Built Environment, 10(3), 504-35.

Brandín, R and Abrishami, S (2021) Information traceability platforms for asset data lifecycle: blockchain-based technologies. Smart and Sustainable Built Environment, 10(3), 364-86.

Eiris, R, Albeaino, G, Gheisari, M, Benda, W and Faris, R (2021) InDrone: a 2D-based drone flight behavior visualization platform for indoor building inspection. Smart and Sustainable Built Environment, 10(3), 438-56.

Faris, E, Matarneh, S, Talebi, S, Kagioglou, M, Hosseini, M R and Abrishami, S (2021) Toward digitalization in the construction industry with immersive and drones technologies: a critical literature review. Smart and Sustainable Built Environment, 10(3), 345-63.

  • Type: Journal Article
  • Keywords: digitalization; immersive technologies; building information modeling; unmanned aerial vehicles; virtual reality; drone vehicles; building management systems
  • ISBN/ISSN:
  • URL: http://dx.doi.org/10.1108/SASBE-06-2020-0077
  • Abstract:
    In this study, a critical literature review was utilized in order to provide a clear review of the relevant existing studies. The literature was analyzed using the meta-synthesis technique to evaluate and integrate the findings in a single context. Digital transformation in construction requires employing a wide range of various technologies. There is significant progress of research in adopting technologies such as unmanned aerial vehicles (UAVs), also known as drones, and immersive technologies in the construction industry over the last two decades. The purpose of this research is to assess the current status of employing UAVs and immersive technologies toward digitalizing the construction industry and highlighting the potential applications of these technologies, either individually or in combination and integration with each other. The key findings are: (1) UAVs in conjunction with 4D building information modeling (BIM) can be used to assess the project progress and compliance checking of geometric design models, (2) immersive technologies can be used to enable controlling construction projects remotely, applying/checking end users' requirements, construction education and team collaboration. A detailed discussion around the application of UAVs and immersive technologies is provided. This is expected to support gaining an in-depth understanding of the practical applications of these technologies in the industry. The review contributes a needed common basis for capturing progress made in UAVs and immersive technologies to date and assessing their impact on construction projects. Moreover, this paper opens a new horizon for novice researchers who will conduct research toward digitalized construction.

Hosseini, M R, Jupp, J, Papadonikolaki, E, Mumford, T, Joske, W and Nikmehr, B (2021) Position paper: digital engineering and building information modelling in Australia. Smart and Sustainable Built Environment, 10(3), 331-44.

Karsten Winther, J, Nielsen, R, Schultz, C and Teizer, J (2021) Automated activity and progress analysis based on non-monotonic reasoning of construction operations. Smart and Sustainable Built Environment, 10(3), 457-86.

Lamptey, T, De-Graft, O-M, Acheampong, A, Adesi, M and Ghansah, F A (2021) A framework for the adoption of green business models in the Ghanaian construction industry. Smart and Sustainable Built Environment, 10(3), 536-53.

Mahmoudi, E, Stepien, M and König, M (2021) Optimisation of geotechnical surveys using a BIM-based geostatistical analysis. Smart and Sustainable Built Environment, 10(3), 420-37.

Oke, A E and Arowoiya, V A (2021) Evaluation of internet of things (IoT) application areas for sustainable construction. Smart and Sustainable Built Environment, 10(3), 387-402.

Xiong, R and Tang, P (2021) Machine learning using synthetic images for detecting dust emissions on construction sites. Smart and Sustainable Built Environment, 10(3), 487-503.